Simultaneous removal of Cd(II) and Sb(V) by Fe-Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption.
نویسندگان
چکیده
The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe-Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Qmax,Sb(V)) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd(2+) exhibited a more significant positive effect than both calcium ion (Ca(2+)) and manganese ion (Mn(2+)). Cd(2+) showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca(2+) and Mn(2+). The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pHi) range from 2 to 9, and QSb(V) decreases whereas QCd(II) increases with elevated pHi. Their combined values, as expressed by QSb(V)+Cd(II), amount to about 2 mmol/g and vary slightly in the pHi range 4-9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).
منابع مشابه
Rapid removal of metals from aqueous solution by magnetic nanoadsorbent: A kinetic study
The effective removal of heavy metals from industrial wastewater is the most important issues for many industrialized countries and it is big challenge for human being. This research focuses on understanding adsorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. In this investigation the Fe2O3 magneti...
متن کاملRapid removal of metals from aqueous solution by magnetic nanoadsorbent: A kinetic study
The effective removal of heavy metals from industrial wastewater is the most important issues for many industrialized countries and it is big challenge for human being. This research focuses on understanding adsorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. In this investigation the Fe2O3 magneti...
متن کاملPotentially Toxic Elements Contamination in Sediment, Surface and Pore water of Maharlu Saline Lake, South - West Iran
Maharlu Lake, located in the SW of Iran, has acted as a sink for various wastewater discharges in the last few decades. This study aimed at assessing potentially toxic elements (PTEs) distribution in sediment, surface and pore water samples of Maharlu Lake. To achieve that, the samples were collected from each compartment and the total concentration of PTEs (Al, Fe, Sc, Cr, Co, Ni, Zn, As, Sb, ...
متن کاملEXTRACTIVE SPECTROPHOTOMETRIC DETERMINATION OF VANADIUM WITH ANTHRANILIC ACID IN PRESENCE OF PYRIDINE
Vanadium (III) gives a greenish- yellow complex with anthranilic acid in presence of pyridine. The complex is extractable with chloroform and is used for photometric determination of vanadium by measuring the absorbance at 390 nm against a reagent blank. Beer's Law holds good in the range of 1-20 pg V/ml. Moderate amounts of Pb (II) , Ca (II) , Sr (II) , Ba (II) , Cd (II) , Mg (II) , Mn (II...
متن کاملRemoval of Cd (II) in Water Samples Using Modified Magnetic Iron Oxide Nanoparticle
Background: Heavy metals, even at low concentrations, are harmful to human health and environment. Cadmium as a heavy metal is highly toxic and can cause serious threat to living organisms. This research was designed to evaluate the adsorption potential of modified magnetic iron nanoparticles by 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol ligand for the removal of cadmium ions from water solu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 300 شماره
صفحات -
تاریخ انتشار 2015